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Head-on collision of two (KdV) solitary waves a t  the interface of an inviscid two-fluid 
system of rigid upper and lower boundaries is investigated by a perturbation method. 
We obtain the third-order solution and find a dispersive wavetrain trailing behind 
each emerging solitary wave. The wavetrain is of the same polarity (depression/ 
elevation) as the main wave. Furthermore, the energy and amplitude of the wave- 
train are decreasing in time as long as i t  is still attached to  the main wave. This implies 
an increase in energy of the main wave. Up to  the third order of accuracy the solitary 
wave emerging from a head-on collision retains its initial profile save for a phase shift. 
This phase shift is found to  be amplitude dependent to the second order. The transfer 
of energy from the wavetrain to the main wave explains the slow recovery of the 
incident profiles in existing numerical results on the head-on collision of two solitary 
waves at the surface of an infinite channel. 

1. Introduction 
Recently many authors have investigated the solitary wave a t  the interface of an 

inviscid two-fluid system of rigid upper and lower boundaries. For reviews see Miles 
(1980), Koop & Butler (1981), Segur & Hammack (1982) and Gear & Grimshaw (1983). 

I n  this paper we consider the head-on collision of two solitary waves by a 
perturbation method to the third order. I n  $2 we present the equations of motion 
in terms of horizontal bottom and ceiling velocities, and the interface. A change to 
the characteristic variables (t, 7,  a, ,8) renders the problem virtually identical with 
that of the head-on collision a t  the surface of an infinite channel. I n  the limit as the 
density of the upper fluid layer goes to zero, the solution obtained agrees with that 
of Su & Mirie (1980, hereinafter referred to as paper 1 ) .  

The KdV equation describes the solitary wave in the first order of approximation. 
This wave is of depression (or elevation) if CT is greater (or smaller) than R2, where 
CT denotes the ratio of the fluid densities and R2 denotes the square of the ratio of 
depths of the fluid layers. The second-order solution of a solitary wave agrees with 
that of Koop & Butler (1981). See Appendix B. The third-order solution of the head-on 
collision indicates that  an emergent solitary wave is tilted backwards to its direction 
of propagation. We obtain third-order results in the run up (maximum amplitude 
during the interaction) and the wave speed. The second-order phase shift is classified 
into uniform and non-uniform shifts. The latter causes the emergent wave to tilt 
backwards to its direction of propagation. 
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The study of the slow time evolution of an emergent wave (asymmetric) is similar 
to that of paper 1 .  We find that the emergent wave evolves into a symmetric solitary 
wave that is trailed by a dispersive wavetrain with its head wave having the same 
polarity (depression/elevation) of the solitary wave. We also show that the energy 
of the wavetrain decreases in time as long as i t  is not entirely separated from the 
main wave. Since the energy of the entire system is conserved, this implies a transfer 
of energy from the wavetrain to the main wave before they completely separated. 

In  the limit as the density of the upper layer goes to zero, the head-on collision 
problem considered is equivalent to that at the free surface of an infinite channel. 
In $ 3  we discuss the recent numerical results on the latter problem. The results 
discussed are those of Mirie & Su (1982), Funakoshi & Oikawa (1982) and Fenton & 
Rienecker (1982). 

A head-on collision between two solitary waves can be considered as made up of 
two parts: the first part (in a faster timescale) is characterized by the interaction of 
two main waves; the second part consists of generation of secondary waves for each 
main wave while the two main waves are already separated from each other. The 
second part also involves the slow separation of the secondary wave from its parent 
wave. From the numerical results cited above, it is found that the amplitude of the 
wave right at the end of the first part of the collision is smaller than that of the 
incoming wave. However, there is a recovery of the.deficit in amplitude during the 
second part of the collision. From the theoretical and numerical results, the final 
deficit is smaller than the third order in the amplitude parameter. 

2. The perturbation method and results 
We consider two immiscible, inviscid, homogeneous fluids bounded from above and 

below by two rigid horizontal planes. The densities of the lower and upper fluids are 
p1 and p, with a = (pz/pl )  < 1. When undisturbed the fluids lie in uniform layers of 
depths ho and H-ho respectively. 

Let W, and W, represent the horizontal velocities at the bottom and the ceiling 
respectively, while h(x, t )  represents the interface measured from the bottom. We 
present the continuity equation in the lower and upper fluid layers, and the Bernoulli 
equation at  the interface (see Mirie 1980) as 

and 

where g is the acceleration due to gravity and C g  = (g) is the binomial coefficient. 
Equations ( 1 )  and (3) reduce to those of paper 1 for the case a = 0. 
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We consider two interfacial solitary waves, far apart, of small but finite amplitude, 
heading towards each other. Our purpose is to  study the phase shift, maximum wave 
height and the generation of secondary waves (wavetrain) of a collision of two such 
solitary waves. For this purpose we shall introduce changes in the independent and 
dependent variables, which will facilitate the direct application of the perturbation 
method of paper 1 .  We take 

(4) 

where 0 < e 4 1 is a dimensional parameter of the order of amplitude of the wave. 
The wavenumbers K and L of the right- and left-going waves are of order unity. The 
wave speeds CR and C, of the right- and left-going waves are related to  the amplitude 
of the corresponding waves. For infinitesimal amplitudes CR and C, reduce to the 
linear speed C2 = gho(l-cr)/(l -u/R), where R = 1 - H / h o  is equivalent to - r  (the 
parameter used initially by Long 1956). 

The transformation between derivatives is given by equations (12) and (13) of paper 
1. Letting h = ho( 1 + 6), we introduce the following change of dependent variables : 

1 5 = dK(x -CRt )  +EKo(t, r ) ,  
?jJ = dL(s+C,t)+sL@(E,7/q, 

g = .(a+P), (5a)  

w = e(ol-P), (5b) 

w, = W+S2UP, ( 5 c )  

W, = W/R+e2p. ( 5 4  

The new variables are then expanded in the following power series: 

where a and b are of order of the amplitude of the right- and left-going solitary waves. 
We also use the following notation: 

U U 1 
R R2 R 

D, = 1-- - ,  D, = 1---,  R, = 1---, R, = R ( R + l ) ,  R, = R,-u, 

y,(m,,m,,m,) = m 1 R 2 , D : + m 2 R 2 D 2 U + m 3 U 2 ,  

y4(ml, m,, m3, m4, m5) = m, Ri Di-tm, R: Di U+m,Ri D: W+m, R, D, W + m 5  U4, ( 7 )  

where the mi are rational numbers to be given later. 
Subtracting (2) from (1) and then substituting the expansions (6), we determine 

the p ,  as 
(8) 
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1 
and Pl = ~ ~ 2 ~ 1 ~ ~ , ~ 1 - P , P I ~ - ~ l ~ ~ , + P o ~ P ,  

RDl 

+%(q + L2a;) (R,R, (a ,  - P J  +&PO) 

+ ~ ~ l ~ z K ~ ~ i ~ ~ K ~ o , a o * f - ~ ~ $ , ~ ~ ~ ~ , + K ~ 0 , B ~ 0 * - ~ ~ o f ~ P o ? , ~  

+ W , h i ( a , + P , )  ( K ~ ~ ~ ~ ~ - L ~ P ~ ~ ~ )  -; ( R ~ -  1 )  ( ~ ~ a ~ ~ ~ ~ ~ -  
h4 

Now substituting (6), p ,  and p ,  in [eqn ( 3 ) +  (eqn ( l ) - ( g / R )  eqn ( 2 ) ) ] ,  we obtain 
equations for a and /3 respectively. The equation for a is given in Appendix A. The 
equation for /3 can be obtained from that for a by replacing a by P, 6 by 7 ,  K by 
L,  F+ by F- and 8 by $. Hence we need only consider the equation for a. Consequently 
the method of solution coincides with that of paper 1 .  

2 . 1 .  Method of solution 

We summarize the method of solution by considering only the coefficients of c2 in 
the equation for a. The solution for the higher orders of e follows steps identical with 
those of e2. We have 

4 0 ,  Lal,+aK[$K2hi U f " + $ D , f 2 - 2 h l ~ D l f l ~  

+uK~[~LD,~,,- D2bg]+ L[Dz(abfg-- 'g2)+~L2hi  Ubg"IB = 0. ( 9 )  

We classify the terms in the successive brackets to  be secular, non-local and local 
respectively. The secular terms are independent of 7. If they were integrated with 
respect to 7,  they would produce an unbounded solution for al. Thus we set them 
equal to zero and obtain 

[!jUhi K2f"+$D,f2-22hl~Dlf l~  = 0, (10) 

where f = ao(() /a .  The coefficient D,  = 1 - a / R 2  in front of f 2  above is just the 
parameter derived by Long (1956). This parameter determines the polarity of the 
KdV soliton profile, i.e. the wave is of depression or elevation according to  whether 
cr > R2 or (T < R2.  For cr = R2 the nonlinear terms disappear. Thus we consider 
(T =I= R2 throughout this paper. In  the case where D, is of the order of magnitude of 
the amplitude, we have cubic as well as quadratic nonlinearity, which will be treated 
in a separate article. (See also Kakutani & Yamasaki (1978), Miles (1979, 1980) and 
Gear & Grimshaw (1983).) We let 

Then the solitary-wave solution for f is given by 

f = AS(() = sech2$t, (12) 

and similarly g = S(7) = sech2$y. (13) 

Since K is real as defined in (4), we see from ( 1 1 )  that  for D, < 0 (or > 0) we have 
a < 0 (or > 0 ) ,  corresponding to a wave of depression (or elevation). 

The non-local terms determine the phase function 8, as a 2 4  multiple of the results 
of Oikawa & Yajima (1973) for the case cr = 0. 

The local terms when integrated with respect to 7 determine a1 up to an arbitrary 
function PI((). The latter is determined from the secular terms in the e3 order. The 
method of solution is then carried to  the next orders of e. The function F,(6) resulting 
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from integrating az is determined in the e4 order (see Appendix A). Consequently we 
complete the third-order solution in terms of e. An exact relation for C, in terms of 
e can be obtained from the linearized terms of (1)-(3). This relation provides a check 
on the calculation in the e-notation. We have 

G - Dl hoks - cot (h ,k)-a cot (h,kR) ’ 

where h, k is given by (1  1) .  

2.2. Third-order results 

We now recast the third-order solution in terms of the amplitude expansion 
parameters eR = [(f = 1, g = 0) and eL = c(f = 0, g = 1 )  of the right- and left- 
going solitary waves. Expressions for the variables relevant to the left-going wave 
could be obtained from those listed below by replacing a by b,  eR by eL, ( by 7, 
and f by g. 

The parameter of expansion ae is related to 8, by 

ae = eR + ( 2 4 )  eh + (2h$ e& T,, (15) 

and 

The wave speed of the right-going wave is given by 

On replacing R by - r ,  the second-order speed agrees with that of Long (1956). 
I n  Appendix B we compare the second-order solution to that of Koop & Butler (1981), 
which has been confirmed by Gear & Grimshaw (1983). I n  figure 1 we plot C, versus 
the amplitude for R = -2.5 and several values of u. 

The wavenumber of the right-going wave is given by 

where 
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FIQURE 1. The third-order result for the wave speed of an internal solitary wave versus the 
wave amplitude for R = - 2.5 and several values of CT. 

and 

160'40 R D z Y z  40' 4 0 ' 2  +'lY4 
RD, ( 17 3 )  (T ( 3  -9 ') ( 1 1  1 19 

s p y 2  0,- - +' 
U 

where 

21 
20 '  15 
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3 79 2 

39 0- 31 13 4 123 61 19 11 
+ 7 y 2  RDl 0,-, -- +’yz - -- -3)J ( 20 RD, ( 8 0 ’ 2 0 . s ) f R ’ Y 4 ( - a o ’ z ~ ~ ~  3 ’ 

21 13 1 1  

2)] 

3 19 q, = :+JZ,y,( -jj> T, 1) 

and 

The third-order solitary-wave solution can be obtained from (18) by setting g = 0. 
To the second order it agrees with that of Koop & Butler (1981) (see Appendix B). 
In  figure 2 we plot this solution for amplitude 0.31 versus 5 and CT. As CT increases, 
the wave becomes flatter. 

The horizontal bottom and ceiling velocities are represented by the function W as 
defined in (5 b ) .  We have : 

= ‘Rf-‘Lg + 2h1[T13(Ek f - €i 9) + T14(%.,f - g’)] 

+ (2hl)2 [ E ~ ( ~ 5 J 3 + T 1 6 f 2 + q 7 n - E 3 L ( l ; 5 g 3  + q6g2+ q7g) 

+ €R ‘Lfg(q8 ( € R f -  €L 9) + q g  (€R - EL) 11 7 (19) 

where 

q3 = ++Q I Y 2 ( S ,  - 1 7  11, 

q 4  = - + Qly2( -%, > l)  > T,,=~+Q,[y,(g 251 

T la =-- ~+sZlS2(0, -9, -;) and q8 = $+Q,y , (O ,~ ,O) .  

8 FLM 147 
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FIGURE 2. The elevation versus the space and F of the amplitude 0.31 solitary wave. The 
third-order solution is used for R = - 1.8. As F increases, the wave becomes flatter. 

X 

2.3. Run u p  
The run up (maximum amplitude during the interaction) is given by 

run up = <(f= 1 ,  g = 1 )  

= ER + CL + CREL + (2hI)' ERcL(ER + EL) [i + Szl(iU+ iRz Dz)]. (20) 

For two identical solitary waves (reflection) we have 

run up = ~ E ~ + ~ ~ E ~ R + ( Z ~ ~ ) ~ E ~ R [ ~ + ~ ~ ~ ( U + ~ R ~ D ~ ) ] .  (21) 

I n  figure 3 we plot the run up versus the amplitude for R = - 2.5,  and several values 
of v. As v increases, the run up diminishes. 
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FIGURE 3. The third-order result for the run u p  of a head-on collision of two identical internal 
solitary waves versus the wave amplitude. R = - 2 . 5 ;  u = 0, 0.2, 0.4, 0.6, 0.8. 

2.4. Phase shift and trailing warvetrain 
The phase shift is given by 

where T,o=#+Q1Y,(-i,4,3), T 2 , = - i + Q , y 2 ( $ ,  -3, -$) 

and T , , = - ~ + Q D , y 2 ( 0 ,  -3,O). 

The term dependent on f in the 8-equation is classified as a non-uniform phase shift. 
It causes the emergent wave after a head-on collision to tilt backwards to its direction 
of motion. We study the slow time evolution of an asymmetric solitary wave by a 
similar procedure to that of paper 1. We use a reference frame centred in the solitary 

23 
wave : 

where K 2  = 3aD,/U, and a = f 1 depending on D, 3 0. Then CR, c, 'W, and W, are 
expanded in power series in terms of c and substituted in [eqn (3)f(eqn (1) 
-(a/R)eqn ( Z ) ) ] .  We find that the equation governing the difference between a 
symmetric and an  asymmetric solitary wave is given by 

6 = K ~ ( z - G R ~ ) ,  T = K d C R t ,  

(24) 
aD 

2 V 7 + 2 [ ( 3 S - 1 )  I.'+ Vg]5 = 0. 
D ,  

This is identical with equation (67) of paper 1, if we let T' = (aD,/D,) T .  

x-2 



222 

0.8 - 

R. M .  Mirie and C. H .  Su 
0 

I 

0 '  ' O.'l ' 012 ' 013 ' 014 ' d.5 ' 6.6 ' d.7 ' 0:s ' 019 

Amplitude 

FIQURE 4. The phase shift after collision of two identical internal solitary waves versus the wave 
amplitude. R = -2.5; CT = 0, 0.2, 0.4, 0.6, 0.8. ----, first-order; -, second-order. 

The initial data V(6 ,O)  = ySS' = 9d (1 -a) (2hJ SS/U allow us to determine 
V(E7 7' ) .  The solution is given by 

J-00 

where fl = 2K/sinh nK and 

2K2S'( 6 )  
S(E) 

F(5, K) = iK(P--l)+BiS([)+S'(5)+ 

(see Jeffrey & Kakutani 1970; Berryman 1976, 1979). For large 7' and fixed [ / T ' ~  the 
above integral admits two stationary points given by 

3~2,=-[1+%]. D,  ar 

A bounded solution V ( ~ , T )  exists for real KO, i.e. for 2D,5/D2a < -7 ,  and the 
asymptotic behaviour of the integral is given by 

+K0(K2,-1+2S(~,)) s i n ( ~ ' g - @ )  1 , (28) 

This represents a wavetrain (wavelet) that started with a profile ySS' - ~ S .  In both 
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FIGURE 5. The second-order phase shift versus and R for the amplitude 0.31 solitary-wave 
reflection. R goes from - 1.2 to -3.8. -, R = - 1.2--2.6; ----, R = -2.7--3.8. 

cases g >< R2 the wavetrain trails behind the symmetric solitary wave, and its 
amplitude diminishes in time as t + co , owing to dispersion. 

The term +yS($) in V($,  7 )  adds to the uniform phase shift. Thus the total uniform 
phase shift of the right-going wave up to O(d)  is 

lhL + 
A0 = l 2 U 0 ( ~ )  [1+(24)%(i+Q1Y2(Q7 -~,~))+(2hl)ER(a+52ly,(O, 110))l. (29) 

2 

For two identical solitary waves (reflection) we have 

A0 = (241 h O ( 3 ) ' [ 1  +(2h,)cR(~+Oly2(Q,$,~))] .  
302 

In  figure 4 we plot the first- and second-order phase shift versus the wave amplitude. 
We notice that, as cr increases, the first-order contribution increases slowly, while the 
second-order part diminishes strongly. In  figure 5 we plot the phase shift of an internal 
solitary wave of amplitude 0.31 versus R and cr. 
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2.5. Energy consideration 

We now consider the time of change of the total energy in the wavetrain. This can 
be obtained by multiplying (24) by V and integrating from - GO to + CO, i.e. 

Suppose that the wavetrain has not completely separated from the main wave and 
is riding on the tail of the latter, then for a right-going wave we are considering S’ > 0. 
Since D,a/D, is positive, we see that 

This represents a decrease in energy of the wavetrain. Since the total energy in the 
fluid is conserved, we conclude that in the final phase of the evolution of the wavetrain 
(i.e. when it rides on the tail of the main wave) the main wave is gaining in energy 
a t  the expense of the wavetrain. 

This energy transfer is manifested in recent numerical results on the head-on 
collision of two solitary waves a t  the surface of an infinite channel (a = 0 case) (see 
Funakoshi & Oikawa 1982; Mirie 1980). 

3. Head-on collision at the surface of an infinite channel 
The solution obtained in $ 2  reduces (for cr = 0) to that  of paper 1 ,  and extends its 

solution in finding an encrgy transfer from the wavetrain to the main wave. Recently 
there have been soveral riumerical calculations on the head-on collision between two 
solitary waves. We take this opportunity to review these results. 

Becausti the head-on collision of two identical waves is equivalent to the reflection 
of one wave by a wall, we follow Maxworthy (1976) in referring to the head-on collision 
by wavt--wall and wave-wave interactions. 

Mirie & Su (1982) used a finite-difference method on the Su-Gardner (1969) set of 
eyuations. They studied both kinds of interactions. Funakoshi & Oikawa (1982) 
repeated Chan & Street’s (1971) calculations by integrating the Euler equations by 
thc same numeriral method (MAC) developed by the latter authors to study the 
wavc-wall interaction. However, Funakoshi & Oikawa used the ninth-order solution 
of’ Fenton (1972) with amplitudes ranging from 0.05 to 0.2 inclusive. Fenton & 
Rienecker (1982) integrated the general equations of motion using a Fourier method. 
They studied both kinds of interactions, and used the Fenton (1972) solution as initial 
data. 

3.1. The maximum run u p  during the interaction 

The second-order result of Byatt-Smith (1971) and Oikawa & Yajima (1973) agreed 
well with the numerical work only for small amplitudes. On the other hand, the 
third-order result of paper 1 showed excellent agreement for all the amplitudes 
considered (see figure 6).  

3.2.  The dispersive wavetrain 

Maxworthy (1976) had reported a secondary wave trailing behind the solitary wave 
of amplitude 0.31, after reflection by a wall. The theory in paper 1 indicated 
the existence of this secondary wave as a dispersive wavetrain in both kinds of 



Internal solitary waves and their head-on collision. Part 1 225 

1.4 *'61 X 
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FIGURE 6. The run up of a head-on collision of two identical solitary waves a t  the free surface of 
an infinite channel versus the wave amplitude. -----, Byatt-Smith (1971) and Oikawa & Yajima 
(1973) ; -, paper 1 ; x , numerical results of Chan & Street ( 1  971 ) and Funakoshi & Oikawa (1982) ; 
0, Mirie & Su (1982); A, Fenton & Rienecker (1982). 

interactions. Mirie & Su (1982) confirmed the existence of the wavetrain for the 
Su-Gardner equations and compared their results with the solution of paper 1 .  They 
have reported a wavetrain in both kinds of interactions, even for small-amplitude 
waves. Funakoshi & Oikawa (1982) confirmed the existence of the wavetrain in the 
Euler equations for the five amplitude cases they have integrated. They reported 
qualitative agreement with the theory. Fenton & Rienecker (1982) reported the 
existence, for amplitudes greater than 0.3, of a secondary wave in the general 
equations in the wave-wall interaction. 

The third-order theory suggests that  the wavetrain amplitude decays as the 
reflected wave propagates away from the centre of interaction. This was confirmed 
by Mirie & Su, where they have extended their range of integration twice and 
compared their numerical results with paper 1. Funakoshi & Oikawa have plotted 
in their figure 3 the dispersion of the wavetrain a t  different times up to  35.5 (non- 
dimensional time). Their results are similar to those of Mirie & Su. Unfortunately, 
Fenton & Rienecker were unable to study the slow time evolution of the wavetrain 
for larger times, owing to their numerical method. 

3.3. Increase in wave speed of the main reJEected wave 

Maxworthy reported that the wave travels faster after reflection. However, he gave 
no further details. Funakoshi & Oikawa reported that there is a slight increase in the 
wave speed, and they noted that the speed is measured from the position of the slowly 
varying crest. I n  a private communication, Funakoshi & Oikawa showed that the 
speed of the crest is higher than the incoming wave just after collision, but decreases 
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FIGURE 7.  The crest value versus time for the amplitude 0.3 case of a solitary wave at the surface 
being reflected by a vertical wall (Mirie 1980; Mirie & Su 1982). ----, water level a t  the wall. 
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FIGURE 8. Same as figure 7 for the amplitude 0.31 case. 
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gradually as time elapses, and finally oscillates around the latter. Fenton & 
Rienecker suggested an empirical third-order relation in amplitude. Based on the 
numerical results of Funakoshi & Oikawa and our own, we believe that the integration 
time of Fenton & Rienecker is too short to give any useful information concerning 
the state of solitary waves long after collision. 

The time of integration as well as the waves considered varied in the three 
numerical studies. Fenton & Rienecker’s time of integration extends till the reflected 
wave returned to its initial position in all the cases they considered except the 
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9.264 37.056 0' 
t 

FIGURE 9. The crest value versus time for the amplitude 0.2 case of a solitary wave a t  the surface 
being reflected by a vertical wall (Funakoshi & Oikawa 1982). This figure comes from a private 
communication from the above authors. 

multiple-reflection case. Funakoshi & Oikawa have a detailed study of the case of 
amplitude 0.2, and their time of integration is about three times that of Fenton & 
Rienecker. The integration time of Mirie & Su is comparable to  that of Fenton & 
Rienecker for the wave-wave interaction, but is more than six times longer in the 
amplitude 0.5 case considered. 

3.4. Decrease in the amplitude of the main reJlected wave 

Mirie (1980) depicted the amplitude versus time for five amplitude cases ranging from 
0.05 to 0.5 (see figures 9(a,  b) there or figures 7 and 8 in this paper). I n  the 0.5 
amplitude case Mirie & Su considered, they extended their range of integration so 
as to allow the wavetrain to detach from the main reflected wave. They have found 
that the decrease in amplitude slowly diminished ; however, the amplitude of the main 
wave did not regain its initial value. They have concluded that the wave did not 
recover 100 yo of its initial profile and had lost about 2 yo of its amplitude and energy. 
They also noted that a t  the end of integration this (real) loss lies beyond the accuracy 
of the third-order calculations. We shall return to  this a t  the end of this section. 
Funakoshi & Oikawa considered the amplitude 0.2 case in greater detail where they 
presented the deviation of the reflected wave from the initial wave at any point and 
a t  several times. I n  their figure 3 the decrease in crest amplitude is 0.0036, a t  time 
23.9. While this decrease is 0.0032 a t  time 29.6 and 0.0023 a t  time 35.5, and i t  is still 
evolving a t  the end of this plot. The difference gets smaller as the wave evolves away 
from the wall. Fenton & Rienecker considered in great detail the two kinds of 
interactions. They have investigated the decrease in wave amplitude, proposed an 
empirical formula (0.4e3), and interpreted their results on the decrease in amplitude 
as a third-order effect not accounted for by paper 1. Figure 9 of this paper, kindly 
supplied by Funakoshi & Oikawa for the amplitude 0.2 case, describes the variation 
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FIGURE 10. The phase shift after reflection at the free surface of an infinite channel versus the wave 
amplitude. -----, Oikawa & Yajima (1973) and implicit results from Byatt-Smith (1971); -1. 
paper 1 ;  -2, @., from Mirie & Su (1982); +, numerical results of Funakoshi & Oikawa (1982). 

of the amplitude of the main wave throughout their time of integration. Figures 7-9 
agree with Fenton & Rienecker, when the wave is close to  the wall, that  the decrease 
is a third-order effect. But as the wave proceeds away from the wall this dip in 
amplitude diminishes, and the wave starts slowly to recover its initial profile. These 
figures demonstrate also that there is an energy transfer from the wavetrain to the 
main wave. It seems that the integration time used by Fenton & Rienecker is not 
long enough to catch the slow recovery of the main waves after their collision. This 
lack of sufficient time in integration may also account for erroneously large phase-shift 
data as will be discussed in 53.5. 

Our calculation shows that the main wave will regain its original form up to 
third-order accuracy. However, this will be so only if we wait long enough for the 
wavetrain to  be completely separated from the main wave. Throughout the separation 
process the apparent energy loss will be slowly transferred back to the main wave 
as shown in (32) and figures 7-9. For relatively large-amplitude waves we expect a 
real energy loss to  persist even after a complete separation has occurred. (See 
figure 3 of Mirie & Su 1982). This real energy loss, however, will be higher than third 
order in amplitude. 

3.5.  The phase shift 
The numerical results of Mirie & Su and Funakoshj & Oikawa, which are based on 
a sufficiently long time after reflection, indicate that the phase shift is amplitude 
dependent and does not depend on any location in this interval (see figure 10). The 
numerical results also agree with the theoretical prediction. However, before the time 
when the wavetrain is completely separated from the main wave, the phase shift will 
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depend on the position where it is measured, simply because the amplitude and 
thus the wave spced of the main wave have not settled down to the fixed values yet. 
The discrepancies in phase shifts between experiment (both laboratory and computer) 
and theory is mainly due to the fact that the values obtained in experiments are taken 
at times when the solitary wave is still interacting with the wavetrain riding on its 
tail. This evolution process can escape one’s attention easily in comparison with the 
relatively dramatical collision process of two main waves. Furthermore, the former 
process carries on long after the two main waves are well separated in space. 
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Appendix A 
Substituting the perturbation expansion (6) in [eqn (3) +eqn ( 1 )  - (cr/R) eqn ( 2 ) ]  

we obtain a power series in E ,  which we denote by the a-equation. We use the notation 
given in (7 )  and recast each order of a alone. 

O[a] = 0:  

O[e21 = 0 :  

a,, = 0, Pot = 0. (A 1 )  

4LDla,,+K~,~[L)1(4L8,,-2ah,) +D2(3a0-P0)l 
- L D , P , , ( ~ , + P , ) + ~ u ( K ~ ~ ~ - ~ L ~ ~ ; )  (ao+po) = 0. (A 2 )  

0 [ € 3 1 =  0:  

4LDla2, + Ka16[D1(4L80,-2ah1) + D2(3ao-Po)] 

+ Lal,PD, bh, + D2(3a0 -Poll - @?(ao +Po) 
- ~ P o , [ 2 ~ 2 ~ l P , , ,  + w J W o g [ +  ~,(K?kO&”O+PO) +a, +P1)1 
+ Kaotl - q1(K2aog + L2Po,,) - W L 3 ~ , , , ,  

+ ~ a , & J a 4  - UlP,) - UK2“0[ff3O,, 

+ L3PO,,,(Whl - gl(Po + 2ao) + uK?ko5) 
+ i u ( ~ a i  - 2 ~ 3 a ; )  (@,-pl) +;,u3(-~5ag+i~5a;) (.,-p,) 
+ z R , ~ , ( q + L a , )  ( a o p o ) + + ~ , ~ ,  ( - ~ a j + 2 ~ 3 a ; )  (a,p,) = 0. (A 3) 

+ La?,) P1 

+D1(4L81,+2bLhl8,, -2U2h2) + D 2 ( ~ 8 0 , ( 3 a 0 - ~ 0 )  +3a1 -pl)l 

op41: secular terms only 

These terms determine the arbitrary function I?,(&) resulting from integrating the 
local terms in a2. They were assembled with the aid of Reduce 2 (an algebraic- 
manipulation computer language developed by Hearn 1973). We have 

F ; + ( 3 f - i ) F ,  = F;-f”/”’= [ 2 h , ( 2 h l ) - 3 - [ l ] ] f + [ 2 ] , f 2 + [ 3 ] f 3 + [ 4 ] f 4 ,  (A 4) P 
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where 
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crR2R2 P I  = (4R3 +29RU), 

9 57 

11 + R " . y 2 ( o ' ~ ,  0 ) + & y 2 ( ~ , 0 , 0 ) + Q , y 4 (  -7, +y, 15 ?, 9 -12, -6  , 
U 

and 
339 169 9 63 7 RD, 243 51 

[4] -$+Ql yz  -- -- [ ( 64 ' 32 - y ) + & Y 2 ( - 5 ,  s' ~ ) f y 2 ( o ,  x ' z )  
33 279 153 29 35 

where Q,, gl, yz ,  y4, R,, R,, R,, U and D, are given in (7). Setting 2h3 = (2h,), [I], 
then 4 = m1 f + m,fz + mgfJ, where 

m =-L 15 [4], m2 = -& (W1+ 15[31) and m, = $21 + [3] +3[4]. 3 

Appendix B 
The third-order solitary-wave solution can be obtained from (18) by setting g = 0. 

This solution extends by one order that of Koop & Butler (1981), which was verified 
by Gear & Grimshaw (1983). Koop & Butler proposed a second-order extended KdV 
equation given by 

c t  +co[c+$i (? Cz czz+ C3 & r ~ ~ z  +ca cczz +cs 6 -t c, = 0. 
Their solution was put in terms of the Ci coefficients. Here we list the relationships 

between the Ci and the notation we used in (7): 

3 0  U 
2 0 ,  6D,' 

cl=-+ C = -  

u, u2 V - 1  7UD2 +- c, = - +--- c3=m 240;' 6D, 120:' 

1-vRw3 7 0 :  V-1  17UD, c5 = +--3 c, = - +-----. 120, 480: D, 8 0 ;  

The wavenumber is related to the Ci by 

And in (18) is related to the Ci by 

c 3c5 3 c  5C3C, 2A (p --A+-->+- , - 2c ,  2C1 4c1 467: 



Internal .solitary waves and their head-on collision. Part 1 23 1 

R E F E R E N C E S  

BERRYMAN, J. G. 1976 Stability of solitary waves in shallow water. Phys. Fluids 19, 771-777. 
BERRYMAN, J. G. 1979 A reply to a comment by R. Van Dooren. Phys. Fluids 22, 1588-1589. 
BYATT-SMITH, J. G.  B. 1971 An integral equation for unsteady surface waves and a comment on 

CHAN, R. K. C. & STREET, R.  L. 1971 A computer study of finite amplitude water waves. J .  Comp. 

FENTON, J. D. 1972 A ninth-order solution for the solitary wave. J .  Fluid Mech. 53, 257-271. 
FENTON, J.  D. & REINECKER, M. M. 1982 A Fourier method for solving nonlinear water-wave 

FUNAKOSHI, M. & OIKAWA, M. 1982 A numerical study on the reflection of a solitary wave in 

GEAR, J. A. & GRIMSHAW, R. 1983 A second-order theory for solitary waves in shallow fluids. Phys. 

HEARN, A. C. 1973 Reduce 2 User’s Manual. University of Utah. 
KAKUTANI, T. & YAMASAKI, N. 1978 Solitary waves in a two-layer fluid. J .  Phys. Soc. Japan 45, 

KOOP, C. G. & BUTLER, G. 1981 An investigation of internal solitary waves in a two-fluid system. 

JEFFREY, A. & KAKUTANI, T. 1970 Stability of the Burgers shock wave and the Korteweg de Vries 

LONG, R. R. 1956 Solitary waves in the one- and two-fluid systems. Tellus 8, 460-471. 
MAXWORTHY, T. 1976 Experiments on collisions between solitary waves. J .  Fluid Mech. 76, 

MILES, J. W. 1979 Internal solitary waves I. Tellus 31, 456-462. 
MILES, J. W. 1980 Solitary waves. Ann. Rev. Fluid Mech. 12, 11-43. 
MILES, J. W. 1981 Internal solitary waves 11. Tellus 33, 397-401. 
MIRIE, R. M. 1980 Collisions of solitary waves. Ph.D. thesis, Brown University. 
MIRIE, R. M. & Su, C. H .  1982 Collisions between two solitary waves. Part 2. A numerical study. 

OIKAWA, M. & YAJIMA, N. 1973 Interactions of solitary waves. A perturbation to nonlinear 

SEGUR, H. & HAMMACK, J. L. 1982 Soliton models for long internal waves. J .  Fluid Mech. 118, 

SU, C.  H. & GARDNER, C .  S. 1969 Korteweg de Vries equation and generalization. 111. Derivation 

Su, C. H. & MIRIE, R. M. 1980 On head-on collision between two solitary waves. J .  Fluid Mech. 

the Boussinesq equations. J .  Fluid Mech. 49, 625-633. 

Phys. 6, 68-94. 

problems: application to solitary-wave interactions. J .  Fluid Mech. 118, 41 1443.  

shallow water. J .  Phys. Soc. Japan 51, 1018-1026. 

Fluids 26, 14-29. 

674-679. ’ 

J .  Fluid Mech. 112, 225-251. 

soliton. Indiana Univ. Math. J .  20, 463468. 

467-490. 

J .  Fluid Mech. 115, 475-492. 

systems. J .  Phys. SOC. Japan 34, 1093-1099. 

285-304. 

of the Korteweg de Vries equation and Burgers equation. J .  Math. Phys. 10, 536-539. 

98, 509-525. 


